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In this document we propose a methodology in order to compute objectives that can
be sustained, under some monotonicity properties, putting in evidence the trade-
off between environmental objectives and production objectives. The proposed
methodology is illustrated by a case of study on a Chilean fishery.

1. Introduction

Sustainable development issues are dynamics and encompass several con-

flicting dimensions between environmental and economic/productive ob-

jectives. For instance, to harvest a renewable natural resource satisfying

environmental constraints versus to obtain minimal revenues. Environmen-

tal objectives, or constraints of environmental type to be satisfied, should

be recommended by specialists in the biology of the resource, in order,

among others, to ensure that resource is not in danger to disappear and/or

its capacity of reproduction is not being largely affected. Production objec-

tives, or constraints of production type to be satisfied, can be established

by regulatory organisms that pretend to ensure a minimal economic activ-

ity in the sector that exploit the resource, inspired by social or productive

purposes. Thus, in this framework, there are clearly two groups of interest:

environmental group v/s production group. In general, if the environmen-

tal constraints are too restrictive, the production objectives (let us think

∗This document, to be presented in the Workshop Mathematics of Ecological Economics,
Paris (february 2013), is based on the working paper titled Bargaining with intertempo-

ral (maxi)min payoffs, a joint work with V. Martinet (INRA, France) and M. De Lara
(U. Paris Est). The presented case of study was prepared with H. Ramirez C. (U. de
Chile), A. Zuleta (CEPES, Chile), and M. De Lara.
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in minimal level of harvest) can not be too exigent and viceversa but, in

practice, it is not an easy task to model this trade-off.

For some renewable natural resources, in some countries, there are com-

mittees whose goal is to recommend (or to impose) environmental and pro-

duction objectives. For instance, we can think in committees composed by

regulatory organisms, stakeholders and scientists for determining quotas of

captures (of one fish stock) and minimal levels of spawning stock biomass,

or for determining green house gas levels of emission. Once objectives (con-

straints) are determined by the committees, how to know if it is possible

to respect these constraints from a feasibility point of view? Of course the

answer should depend on the current state of the resource but, how? A

mathematical framework for modeling this problem is the control theory in

discrete-time and the associated viability theory.

The goal of this paper is to propose a methodology in order to compute

objectives that can be sustained, under some monotonicity properties, and

thus, to put in evidence the mentioned trade-off between environmental

objectives and production objectives. The proposed methodology will be

illustrated by a case of study on a Chilean fishery.

2. Viability in discrete time

Let us consider a nonlinear control system described in discrete time by the

difference equation
{
N(t+ 1) = g(N(t), u(t)), t = t0, t0 + 1, . . .

N(t0) given,

where the state variable N(t) belongs to the finite dimensional state space

X = R
nX , the control variable u(t) is an element of the control set U = R

nU

while the dynamics g maps X×U into X. As motivation, we can think that

the state N represents the abundances of a renewable natural resource.

A decision maker describes acceptable configurations of the system

through a set D ⊂ X× U termed the acceptable set

(N(t), u(t)) ∈ D , ∀t = t0, t0 + 1, . . .

where D includes both system states and controls constraints. Typical

instances of such an acceptable set are given by inequalities requirements:

Dθ = {(N, u) ∈ X× U | ∀i = 1, . . . , p , Ii(N, u) ≥ θi},

where the functions I1, . . . , Ip may be interpreted as indicators, and

θ = (θ1, . . . , θp) is the vector of corresponding thresholds. For manage-
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ment issues, the set Dθ will be the mathematical expression of preservation

and/or production objectives.

Viability is defined (see [1, 2] and the references therein) as the ability

to choose, at each time step t = t0, t0 + 1, . . ., a control u(t) ∈ U such that

the system configuration remains acceptable. More precisely, the system is

viable if the following feasible set is not empty:

V(g,Dθ) :=




N0 ∈ X

∣∣∣∣∣∣∣∣

∃ (u(t0), u(t0 + 1), . . .) and (N(t0), N(t0 + 1), . . .)

satisfying N(t0) = N0 , N(t+ 1) = g(N(t), u(t))

and (N(t), u(t)) ∈ Dθ , ∀t = t0, t0 + 1, . . .





.

For a decision maker, knowing the viability kernel has practical interest

since it describes the set of states from which controls can be found that

maintain the system in an acceptable configuration forever. However, com-

puting this kernel is not an easy task in general. On the other hand, given

an initial state N0 it will be interesting to determine what are the vectors

of threshold θ such that N0 ∈ V(g,Dθ).

2.1. Sustainable thresholds

The set of sustainable thresholds starting from an initial condition N0 is

given by

S(N0) :=





θ = (θ1, . . . , θp) ∈ R
p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ (u(t0), u(t0 + 1), . . .) and

(N(t0), N(t0 + 1), . . .)

satisfying N(t0) = N0

N(t+ 1) = g
(
N(t), u(t)

)

∀ t = t0, t0 + 1, . . . and

Ii
(
N(t), u(t)

)
≥ θi ∀ i = 1, . . . , p





.

(1)

From the definition of the viability kernel given in the previous section,

one has

S(N0) := {θ ∈ R
p | N0 ∈ V(g,Dθ)}. (2)

Notice that if θ ∈ S(N0) then θ′ ≤ θ (with the componentwise order)

belongs also to S(N0).
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To determine the set of thresholds S(N0), for a given initial condi-

tion N0, has practical interests. In fact, if a vector of threshold θ =

(θ1, θ2, . . . , θp) represents the minimal objectives to be reached during the

harvesting of a natural resources and these objectives are determined in

a bargaining process where many interest (environmental and productive)

are represented, the goal of this procedure should be to choose a vector θ

in S(N0).

Under some monotonicity assumptions, to be introduced in the next

section, for an initial state N0 we shall provide methods for:

(1) To compute S(N0);

(2) Given p−1 thresholds θ1:p−1 := (θ1, . . . , θp−1) to compute the max-

imal thresholds θp such that θ = (θ1, θ2, . . . , θp) ∈ S(N0).

The second statement is motivated when there is a priority in the deter-

mination of some thresholds (θp) and therefore the idea is to compute the

maximum reachable for the other given thresholds θ1:p−1 = (θ1, . . . , θp−1).

In the management of natural resources, the threshold to be fixed in ad-

vance could be such related to environmental constraints and the other

related to a productive one.

3. Monotone bioeconomics models

Some dynamic models have the following qualitative properties (ceteris

paribus): (i) the higher the state vector at a period is, the higher it is

at the following period; (ii) the higher the decision at a period is, the lower

the state vector is at the following period. As we put a particular focus

on environmental issues, let us emphasize that these properties are satis-

fied, for instance, for problems of natural renewable resource stocks and

harvestinga or air quality dynamics and pollutant emissionsb.

aThe larger the resource stock at one period, the larger at the following. The larger

the extraction, the lower the resource stock at the following period. Note that these
assumptions are not satisfied for multispecies ecological models when there is a prey-
predator relationship, as a larger predator stock may reduce the next period prey stock.
bThe better the air quality at one period, the better at the following period (ceteris

paribus). And the higher the pollutant emission at one period, the worse the air quality
at the following period. This works for the climate change issue and greenhouse gases
emissions, taking the negative level of CO2 atmospheric concentration as a state.
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Monotonic indicators and interest groups. With respect to the in-

dicators, we can also exhibit such monotonicity properties. If all all the

components of the vector state N are defined as “goods,” indicators will

usually increase with the state, i.e., the larger the state vector, the higher

the indicators.c Some indicators may also be monotonically responding

to the decisions. This is the case for environmental indicators which are

monotonically decreasing with the decisions such as resource extraction or

pollutant emissions.d

In order to represent the mentioned above behaviors, we supply the state

space X ⊂ R
nX and the decision space U ⊂ R

nU with the componentwise

order: N ′ ≥ N if and only if each component of N ′ = (N ′

1, . . . , N
′

d) is

greater or equal than to the corresponding component of N = (N1, . . . , Nd).

We say that a mapping f : X × U −→ R
d, defined for state and decision

variables, with values in R
d (we will use d = nX for the dynamics case, and

d = 1 for the indicator case), is increasing with respect to the state variable

if it satisfies ∀ (N,N ′, u) ∈ X×X×U, N ′ ≥ N ⇒ f(N ′, u) ≥ f(N, u), and

is decreasing with respect to the decision if ∀ (N, u, u′) ∈ X × U × U, u′ ≥

u ⇒ f(N, u′) ≤ f(N, u). Obviously, according to the previous definition,

if a function does not depend on the state or the decision, it will be both

increasing and decreasing with respect to such variable.

Definition 3.1. Let k ∈ {1, . . . , p − 1}. We will say that the dynamics g

and the indicators I1, . . . , Ip satisfy the MONDAIk property if:

• the dynamics g : X×U −→ X is increasing in the state variable and

decreasing in the decision;

• all the indicators Ii : X×U −→ R are continuous, and are increasing

in the state variable;

• the first k indicators I1, . . . , Ik are decreasing in the decision vari-

able.

In the previous definition, all the indicators are increasing with the

state. This assumption means that all the components of the state vari-

cThis is true for economic indicators, which may depend for instance on capital stocks,

knowledge / human capital, or infrastructures. This is also true for ecological indicators
as long as the capital stocks are properly defined, by accounting for “bads” (pollution
for instance) by their negative level.
dNote that economic indicators may be monotonically increasing with the decisions, but

not necessarily. For example, fishermen may favor an increase of fishing effort as long as
it increases their profit, but no more when the associated cost is higher than the benefit
from fishing.
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able are valuable (or at least not damageable). The agents represented by

indicators of the first group {1, . . . , k} have a particular interest in having

the decision always as small as possible (e.g., fishing effort, GHG emissions,

deforestation), which is interpreted as a “pro-environmental group” in our

environmental issue context. Their indicators are always decreasing when

the decision variables increase. On the contrary, the second group of indi-

cators does not depend on the decision in a particular way (or some of the

indicators may be increasing with the decision, in opposition to the indica-

tors of the first group). The agents represented by indicators of the second

group {k+1, . . . , p} are called outsiders of the interest group {1, . . . , k} as

they have no systematic “monotonic” interest in the decision level.

When the sequence of actions or controls u(t0), u(t0 + 1) . . . is defined

by a feedback rule, i.e., a mapping u : X → U giving each decision as a

function of the state by u(t) = u

(
N(t)

)
, one gets the closed-loop dynamics





N(t0) = N0

u(t) = u

(
N(t)

)

N(t+ 1) = g
(
N(t), u(t)

)
.

(3)

For a vector of satisficing outcomes θ = (θ1, . . . , θp) ∈ S(N0) – under

the monotony assumptions MONDAIk – we shall describe a common feedback

decision rule that ensures to obtain at least these thresholds. This rule will

be parametrized by thresholds of the outsiders of the interest group.

In what follows, we will consider a scalar decision, i.e., U ⊂ R.

The next result, which is a slight extension of the result established in

[5], provides in the MONDAIk framework a tool for determining whenever a

vector of threshold I = (I1, . . . , θp) belongs to S(N0) or not.

Proposition 3.1. Assume that the dynamics g and the indicators

I1, . . . , Ip satisfy the MONDAIk property and the control set U is bounded

and closed.

Consider p−k thresholds θk+1:p = (θk+1, . . . , θp) ∈ R
p−k and define the

decision rule u
⋆
θk+1:p

bye

u
⋆
θk+1:p

(N) := inf{u ∈ U | Ii(N, u) ≥ θi , i = k + 1, . . . , p} . (4)

Then, for any θ1:k = (θ1, . . . , θk) ∈ R
k, the vector of thresholds θ =

eNotice that u
⋆

θk+1:p
(N) is not defined for thoses states N such that {u ∈ U | Ii(N, u) ≥

θi , i = k + 1, . . . , p} = ∅.
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(θ1:k, θk+1:p) belongs to S(N0) if and only if the feedback decision u
⋆
θk+1:p

is

a common decision rule that allows to obtain at least θ, starting from N0.

Proof. We have to show that for an initial state N0, if the vector of thresh-

olds θ = (θ1:k, θk+1:p) belong to S(N0) then, u
⋆(t) = u

⋆
θk+1:p

(N(t)) defined

in (4) is a decision rule that allows to obtain at least θ.

Take θ = (θ1:k, θk+1:p) ∈ S(N0) and a sequence of decisions u(t0), u(t0+

1) . . . that allows to guarante these thresholds. Since θ ∈ S(N0), the de-

cision u
⋆
θk+1:p

(N0) is well defined (the infimum is taken over an nonempty

set) and (from the definition of u
⋆
θk+1:p

(·) in (4)), we have that u(t0) ≥

u
⋆
θk+1:p

(N(t0)) and therefore, due to g is decreasing in the decision variable,

we obtain that

N⋆(t0 + 1) = g(N(t0), u
⋆
θk+1:p

(N(t0))) ≥ g(N(t0), u(t0)) = N(t0 + 1) .

In the following we will denote by N⋆(·) and N(·) the trajectories of the

states generated by feedback decisions u
⋆
θk+1:p

and decisions u(·) respec-

tively.

Since indicators Ii, i = k+1, . . . , p, are increasing with the state N , we

can see in (4) that u⋆θk+1:p
(N) is decreasing with the state N . Hence

u(t0 + 1) ≥ u
⋆
θk+1:p

(N(t0 + 1))

by definition of u⋆θk+1:p
because

Ii(N(t0 + 1), u(t0 + 1)) ≥ θi , i = k + 1, . . . , p

≥ u
⋆
θk+1:p

(N⋆(t0 + 1))

because u
⋆
θk+1:p

(·) is decreasing in the state variable .

We thus obtain that

N⋆(t0 + 2) = g(N⋆(t0 + 1), u⋆θk+1:p
(N⋆(t0 + 1)))

≥ g(N⋆(t0 + 1), u(t0 + 1))

because the dynamics g is decreasing in the control variable

≥ g(N(t0 + 1), u(t0 + 1))

because the dynamics g is increasing in the state variable

= N(t0 + 2) .

Recursively we can conclude that N⋆(t) ≥ N(t) and u
⋆
θk+1:p

(N⋆(t)) ≤ u(t)

for all t ≥ t0.

On the other hand, by assumption, the indicators I1, . . . , Ik are increas-

ing in the state and decreasing in the decision variable. We deduce then
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that for i = 1, . . . , k,

Ii
(
N⋆(t), u⋆θk+1:p

(N⋆(t))
)
≥ Ii

(
N(t), u(t)

)
≥ θi .

For i = k+1, . . . , p, notice that Ii
(
N⋆(t), u⋆θk+1:p

(N⋆(t))
)
≥ θi by definition

of u⋆θk+1:p
which allows to conclude the desired result.

Finally, if u⋆θk+1:p
is a common decision rule that allow to obtain at least

θ = (θ1:k, θk+1:p), obviously θ ∈ S(N0).

The interest of the previous result is twofold. On the one hand, if

(θ1, . . . , θp) ∈ S(N0), the trajectory starting from the initial state N0 and

defined by the feedback rule u
⋆
θk+1:p

, that is





N(t0) = N0

N(t+ 1) = g
(
N(t), u⋆θk+1:p

(N(t))
)

t = t0, t0 + 1, . . . ,
(5)

guarantee to satisfy the constraints for the thresholds θ1, . . . , θp. On the

other hand, given a partial set of outcomes θk+1:p, if the economic trajec-

tory (5) defined by u
⋆
θk+1:p

does not achieve a given complementary set of

outcomes θ̃1:k, no other rule will. It means that outcomes (θ̃1:k, θk+1:p)

cannot be guaranteed, namely (θ̃1:k, θk+1:p) /∈ S(N0).

Maximal minimal economic outcome Notice that in the particular

case MONDAIp−1, that is, the last indicator is an economic instantaneous

payoff and the first p− 1 indicators are of an environmental type, one may

consider the economic problem of maximizing the economic payoff under

environmental constraints (i.e. given the environmental thresholds).

Proposition 3.1 provides us a tool in order to compute, starting from a

state N0, the maximal threshold reachable as minimal outcome for the last

indicator, when the other thresholds are fixed. Indeed, under MONDAIp−1 as-

sumptions, for a fixed set of thresholds θ1:p−1 = (θ1, . . . , θp−1) and different

threshold θp, we can run the dynamics




N(t0) = N0

N(t+ 1) = g
(
N(t), u⋆θp(N(t))

)
t = t0, t0 + 1, . . . ,

(6)

where u
⋆
θp
(N(t)) = min{u ∈ U | Ip(N(t), u) ≥ θp}. If dynamics (6) is well

defined, that is, if for all t the set {u ∈ U | Ip(N(t), u) ≥ θp} is not empty,

then, from Proposition 3.1 we obtain that θ = (θ1, θ2, . . . , θp) belongs to

S(N0). In such a case, we can increase θp and run again the dynamics (6)
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with the associated decision rule u⋆θp(N(·)). On the other hand, if (6) is not

well defined, we try with a lower θp. Thus, recursively we can construct a

sequence of thresholds θp converging to

θ⋆p(θ1:p−1, N0) = max{θp | θ = (θ1, . . . , θp) ∈ S(N0)}. (7)

We state in Algorithm 1 a simple bisection procedure to compute the

value θ⋆p(θ1:p−1, N0).

Algorithm 1 Computation of maximum value θ⋆p(θ1:p−1, N0)

Require: Initial state N0, thresholds θ1:p−1 = (θ1, ..., θp−1), maximal time

Tmax > t0 and a tolerance ε.

1: θmin
p := min

u∈U

Ip(N0, u)

2: θmax
p := max

u∈U

Ip(N0, u)

3: while θmax
p − θmin

p ≥ ε do

4: N(t0) = N0

5: notviable := 0

6: t := t0
7: θp = (θmax

p + θmin
p )/2

8: while t ≤ Tmax and notviable = 0 do

9: if {u ∈ U ; Ip(N(t), u) ≥ θp} 6= ∅ then

10: ū := min{u ∈ U ; Ip(N(t), u) ≥ θp}

11: if Ii(N(t)), ū) ≥ θi, ∀i = 1, ..., p− 1 then

12: N(t+ 1) := g(N(t), ū)

13: else

14: θmax
p := θp

15: notviable := 1

16: end if

17: t := t+ 1

18: else

19: notviable := 1

20: end if

21: end while

22: if notviable = 0 then

23: θmin
p = θp

24: end if

25: end while

Ensure: θp := θmin
p
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The boolean variable notviable defined in line 5 indicates if the current

value of θp allows that N0 ∈ V(g,Dθ) for the given reference points values

θ1:p−1, where θ = (θ1:p−1, θp). So, variable notviable became 1 in line 15

iff N(t) /∈ V(g,Dθ) for the tested values, and then our algorithm stops the

inner while cycle defined between lines 8 and 21. In such case a smaller value

of θp is tested in the next iteration. Otherwise, the inner while cycle ends

after Tmax iterations and a lager value of θp is tested in the next iteration

(see if sentence in lines 22–24). Hence, the algorithm finishes obtaining

the largest value of θp such that θ = (θ1, . . . , θp) ∈ S(N0) or, equivalently,

N0 ∈ V(g,Dθ).

The main computation of the algorithm is done in line 10. This is

a one variable optimization problem, which can be solved very easily for

some particular constraint Ip. For instance, in many management problem,

function Ip(N, ·) is monotone for any N . Then, in this case, line 10 is

replaced by solving the equation Ip(N(t), u) = θp.

The maximal threshold θp to be considered at the beginning of the

algorithm can be also computed using the methodology introduced in [4].

3.1. Non-cooperative sustainable thresholds

Thanks to the result of Proposition 3.1, we shall provide a way to describe

the set of sustainable thresholds S(N0).

Proposition 3.2. If the dynamics g and the indicators I1, . . . , Ip are

MONDAIk for some k ∈ {1, . . . , p− 1} then,

S(N0) = {θ = (θ1:k, θk+1:p) ∈ R
p | θ1:k ≤ Θ1:k(θk+1:p, N0)} (8)

where the components of

Θ1:k(θk+1:p, N0) = (Θ1(θk+1:p, N0), . . . ,Θk(θk+1:p, N0)) are defined by

Θi(θk+1:p, N0) = inf
t=t0,t0+1,...

Ii
(
N(t), u⋆θk+1:p

(N(t))
)

i = 1, . . . , k . (9)

Here above, the decision rule u
⋆
θk+1:p

is given by (4) and the state by the

closed loop dynamics (5).

Proof.

For θ = (θ1, . . . , θp) = (θ1:k, θk+1:p) in S(N0) we first prove that the

inequalities θi ≤ Θi(θk+1:p, N0) for i = 1, . . . , k hold. From the definition

of S(N0), there exists a sequence of controls u(t0), u(t0 + 1), . . . such that
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the trajectory given by
{
Ñ(t+ 1) = g(Ñ(t), u(t)), t = t0, t0 + 1, . . .

Ñ(t0) = N0

satisfies

Ii(Ñ(t), u(t)) ≥ θi i = 1, 2, . . . , p t = t0, t0 + 1, . . . . (10)

Since Ii(N0, u(t0)) ≥ θi, for i = k + 1, . . . , p, from the definition of u⋆θk+1:p

one has u(t0) ≥ u
⋆
θk+1:p

(N0) which, from (10) (for t = t0) and monotonicity

properties of indicators I1, . . . , Ik, implies

Ii
(
N0, u

⋆
θk+1:p

(N0)
)
≥ θi i = 1, . . . , k .

If we consider the trajectory
{
N(t+ 1) = g

(
N(t), u⋆θk+1:p

(N(t))
)
, t = t0, t0 + 1, . . .

N(t0) = N0
(11)

inductively we can prove that u⋆θk+1:p
(N(t)) ≤ u(t) and N(t) ≥ Ñ(t) for all

t = t0, t0 + 1, . . .. Therefore

Ii
(
N(t), u⋆θk+1:p

(N(t))
)
≥ Ii

(
Ñ(t), u(t)

)
≥ θi i = 1, . . . , k, t = t0, t0+1, . . .

implying θi ≤ Θi(θk+1:p, N0) for i = 1, . . . , k.

For the reverse inclusion in (8), take θ = (θ1:k, θk+1:p) ∈ R
p. If θ1:k ≤

Θ1:k(θk+1:p, N0), from he definition of Θi(θk+1:p, N0) in (9), we have that

the trajectory defined in (11) satisfies

Ii
(
N(t), u⋆θk+1:p

(N(t))
)
≥ Θi(θk+1:p, N0) ≥ θi i = 1, . . . , k, t ≥ t0

and, from definition of u⋆θk+1:p
(·), one has

Ii
(
N(t), u⋆θk+1:p

(N(t))
)
≥ θi i = k + 1, . . . , p, t ≥ t0

concluding that θ = (θ1:k, θk+1:p) ∈ S(N0), because the common decision

rule u
⋆
θk+1:p

is admissible for θ.

Equality (8) establishes that the set of satisficing thresholds is parame-

terized by the p − k thresholds associated to the outsiders group. Indeed,

the outcomes θ = (Θ1:k(θk+1:p, N0), θk+1:p), when θk+1:p covers different

values on R
p−k, allow to compute the set S(N0) by the relation (deduced

from Proposition 3.2)

S(N0) = Ŝ(N0) + R
p
−
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where

Ŝ(N0) =
{
(Θ1:k(θk+1:p, N0), θk+1:p) | θk+1:p ∈ R

p−k
}

, (12)

and R
p
−

is the p dimensional negative octant R
p
−

= {(σ1, . . . , σp) | σi ≤

0 , i = 1, . . . , p}. Thus, the set of satisficing outcomes S(N0) is obtained

by means of Ŝ(N0) which is more tractable to compute.

Figure 1 illustrates how to compute Ŝ(N0) and therefore S(N0). The

figure corresponds to a case with p = 3 and k = 2. Taking u
⋆
θ3
(N) =

inf{u|I3(N, u) ≥ θ3} and computing Θ1 and Θ2 for all θ3.

θ1

θ2

Θ2(θ3, N0)

Θ1(θ3, N0)

θ3

Ŝ(N0)

Figure 1. Sustainable thresholds parameterized by threshold θ3.

4. Application to fishery management

In this section we apply and specify the previous results in the case of an

age-structured abundance population model, especially with a Beverton-

Holt stock-recruitment relationship. With this, we provide numerical esti-

mates for one Chilean fishery.
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4.1. An age class dynamical model

We consider an age-structured abundance population model with a possibly

non linear stock-recruitment relationship, derived from fish stock manage-

ment (see [6], and also [3] for more details).

Time is measured in years, and the time index t ∈ N represents the

beginning of year t and of yearly period [t, t + 1[. Let A ∈ N
∗ denote

a maximum age, and a ∈ {1, . . . , A} an age class index, all expressed in

years. The state is the vector N = (Na)a=1,...,A ∈ R
A
+, the abundances at

age: for a = 1, . . . , A−1, Na(t) is the number of individuals of age between

a− 1 and a at the beginning of yearly period [t, t+1[; NA(t) is the number

of individuals of age greater than A − 1. The control u(t) is the fishing

effort (multiplier), supposed to be applied in the middle of period [t, t+1[.

The control dynamical model is

N(t+ 1) = g
(
N(t), u(t)

)
, t = t0, t0 + 1, . . . , N(t0) = N0 given,

where the vector function g = (ga)a=1,...,A is defined for any N ∈ R
A
+ and

u ∈ R+ by




g1(N, u) = ϕ
(
SSB(N)

)
,

ga(N, u) = e−(Ma−1+uFa−1)Na−1, a = 2, . . . , A− 1 ,

gA(N, u) = e−(MA−1+uFA−1)NA−1 + e−(MA+uFA)NA .

(13)

In the above formulas, Ma is the natural mortality rate of individuals of

age a and Fa is the mortality rate of individuals of age a due to harvesting

between t and t + 1, supposed to remain constant during period [t, t + 1[

(the vector (Fa)a=1,...,A is termed the exploitation pattern). The function

ϕ describes a stock-recruitment relationship. The spawning stock biomass

SSB is defined by

SSB(N) :=

A∑

a=1

γawaNa , (14)

that is summing the contributions of individuals to reproduction, where

(γa)a=1,...,A are the proportions of mature individuals (some may be zero)

at age and (wa)a=1,...,A are the weights at age (all positive).

We will assume that this function is given by ϕ(B) = B
α+βB

(allowing

the cases α = 0 or β = 0), known in the literature as the Beverton-Holt

stock-recruitment relationship.
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4.2. Indicators reflecting conflicting preservation and

production objectives

We shall consider an acceptable set which reflects conflicting objectives of

preservation – measured by the spawning stock biomass being high enough

– and of production, measured by following yield indicator described below.

The production in term of biomass at the beginning of period [t, t+ 1[

is (see [6])

Y
(
N, u

)
=

A∑

a=1

wa

uFa

uFa +Ma

(
1− e−(Ma+uFa)

)
Na . (15)

We focus our analysis on the acceptable set

D(Blim,ymin) := {(N, u) | SSB(N) ≥ Blim, Y (N, u) ≥ ymin} , (16)

where the yield function Y is given by (15) and SSB by (14).

Thus, our goal is, given an initial vector of abundance N0, to compute

the set of sustainable spawning stock biomass and catches given by

S(N0) :=





θ = (Blim, ymin) ∈ R
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ (u(t0), u(t0 + 1), . . .) and

(N(t0), N(t0 + 1), . . .)

satisfying N(t0) = N0

N(t+ 1) = g
(
N(t), u(t)

)

∀ t = t0, t0 + 1, . . . and

SSB(N(t)) ≥ Blim

Y (N(t), u(t)) ≥ ymin





. (17)

It is straightforward to check that the dynamics g given by (13) and the

indicators SSB and Y satisfy the property MONDAIk (see Definition 3.1) for

k = 1.

4.3. Numerical applications to the Chilean sea bass

We provide numerical estimates of the set S(N0) obtained for the species

Chilean sea bass (Dissostichus eleginoides), harvested in the south of Chile.

The dynamic of the Chilean sea bass can be described by the model (13)

with a Beverton-Holt stock-recruitment relationship ϕ. The mortality is

supposed to be the same at all ages. Numerical data have been provided

by the Centro de Estudios Pesqueros - Chile (CEPES).



December 24, 2012 12:39 Proceedings Trim Size: 9in x 6in sust˙thresholds

15

For an initial vector of abundances N0, we have computed the set Ŝ(N0)

which, from Proposition 3.2, allows to determine the set S(N0) of sustain-

able thresholds (Blim, ymin).

The industrial harvesting of the Chilean sea bass started at 1988. The

spawning stock biomass SSB with its respectively threshold Blim are mea-

sured as the fraction of the SSB present at 1988, noted by SSB0. A pre-

cautionary approach, indicated for this species, is to impose Blim around

0.4SSB0. The productive thresholds, representing minimal catches, are

measured in thousand of tons. The Figure 2 shows an schematic example:

the curve in that case represents the set Ŝ(N0) and, therefore, all the points

below this curve are sustainable thresholds (Blim, ymin) in S(N0).

0

2

4

6

8

0 20 40 60 80 100

S(N0)

ymin (103 tons)

Blim (fraction of SSB0)

Figure 2. Set of sustainable thresholds S(N0).

The last three figures show the sustainable thresholds (Blim, ymin) con-

sidering three different initial states. We compute S(N0) for N0 the vector

of abundances in the years 1988, 1997, and 2006.

In the Figure 3 we can see that with the vector of the abundance in
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N(1988)

Figure 3. Set S(N0) for N0 the vector of abundances at year 1988.

N(1997)

Figure 4. Set S(N0) for N0 the vector of abundances at year 1988 and 1997.

1988, for obtaining a spawning stock biomass above 0.4 SSB0 we can assure

at least 7 000 tons as minimal catches. Nevertheless, if we see the set

of sustainable thresholds for the vector of abundances at year 2006, for

obtaining the same threshold for SSB, we can not assure a positive minimal



December 24, 2012 12:39 Proceedings Trim Size: 9in x 6in sust˙thresholds

REFERENCES 17

N(2006)

Figure 5. Set S(N0) for N0 the vector of abundances at year 1988, 1997, and 2006.

level of catches for the future year.
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